Рассмотрим задания из №7 ЕГЭ, в которых данная прямая параллельна касательной к графику функции.

№1

Прямая y=9x+5 параллельна касательной к графику функции y=x²-5x+54. Найти абсциссу точки касания.

Решение:

Прямые y=k1x+b1 y=k2x+b2 параллельны,если их угловые коэффициенты равны: k1=k2.

y=9x+5, отсюда k1=9.

Угловой коэффициент касательной равен значению производной в точке касания: k2=f'(xo).

f'(x)=(x²-5x+54)’=2x-5;

f'(xo)=2xo-5.

Таким образом, 2xo-5=9; 2xo=14; xo=7.

Ответ: 7.

№2

Прямая y=14-2x является касательной к графику функции y=x³+1,5x²-8x+4. Найти абсциссу точки касания.

Решение:

Угловой коэффициент касательной равен значению производной в точке касания: k=f'(xo).

f'(x)=(x³+1,5x²-8x+4)’=3x²+3x-8;

f'(xo)=3xo²+3xo-8.

По условию, y=14-2x. Отсюда k=-2.

3xo²+3xo-8=-2

3xo²+3xo-6=0

xo²+xo-2=0

xo=1 либо xo=-2.

Точка касания принадлежит и касательной, и графику функции.

xo³+1,5xo²-8xo+4=14-2xo.

Проверяем, выполняется ли равенство при xo=1:

1³+1,5·1²-8·1+4=14-2·1?

-1,5≠12.

При xo=-2:

(-2)³+1,5·(-2)²-8·(-2)+4=14-2·(-2)

18=18.

Абсцисса точки касания равна xo=-2.

Ответ: -2.

№3

Прямая y=11x+8 является касательной к графику функции y=ax²+7x-2. Найти a.

Решение:

Угловой коэффициент касательной равен значению производной в точке касания: k=f'(xo).

f'(x)=(ax²+7x-2)’=2ax+7;

f'(xo)=2axo+7.

По условию, уравнение касательной y=5x+1, поэтому k=5.

Имеем: 2axo+7=11, откуда axo=2.

Точка касания принадлежит и касательной, и графику функции, поэтому

axo²+7xo-2=11xo+8. Подставив в это равенство axo=2, получим

2xo+7xo-2=11xo+8, откуда xo=-5.

axo=2

-5a=2

a=-0,4.

Ответ: 0,4.

№4

Прямая y=-6x+7 является касательной к графику функции y=6x²+bx+13. Найти b, учитывая, что абсцисса точки касания меньше 0.

Решение:

Угловой коэффициент касательной равен значению производной в точке касания: k=f'(xo).

f'(x)=(6x²+bx+13)’=12x+b;

f'(xo)=12xo+b.

По условию, уравнение касательной y=-6x+7, поэтому k=-6.

Имеем: 12xo+b=-6, откуда b=-12xo-6.

Точка касания принадлежит и касательной, и графику функции.

6xo²+bxo+13=-6xo+7

6xo²+(-12xo-6)xo+13=-6xo+7

6xo²-12xo²-6xo+13+6xo-7=0

-6xo²+6=0

xo=1 либо xo=-1.

По условию, xo<0, следовательно, xo=-1.

b=-12·(-1)-6=6.

Ответ: 6.

№5

Прямая y=2x+4 является касательной к графику функции y=x²-4x+c. Найти c.

Решение:

Угловой коэффициент касательной равен значению производной в точке касания: k=f'(xo).

f'(x)=(x²-6x+c)’=2x-6;

f'(xo)=2xo-6.

По условию, уравнение касательной y=2x+4, поэтому k=2.

Имеем: 2xo-6=2, откуда xo=4.

Точка касания принадлежит и касательной, и графику функции, поэтому

xo²-4xo+с=2xo+4. Подставив в это равенство xo=4, получим

16-16+с=8+4

с=12.

Ответ: 12.

Ваш отзыв , 29 Июн 2021

Ваш отзыв