Призма описана около цилиндра, если ее основания — многоугольники, описанные около оснований цилиндра. Соответственно, цилиндр вписан в призму.
Цилиндр можно вписать в призму, если в основание призмы можно вписать окружность. Радиус вписанной окружности равен радиусу цилиндра. Высоты цилиндра и призмы равны. В школьном курсе изучается только прямой круговой цилиндр, соответственно, цилиндр в этом случае вписан в прямую призму.
Боковые грани описанной около цилиндра призмы являются касательными плоскостями к боковой поверхности цилиндра.
Найдем отношение объема призмы к объему вписанного в нее цилиндра:
p — полупериметр основания призмы, r — радиус вписанной в основание призмы окружности и радиус цилиндра, H — высота призмы и высота цилиндра.
В частности, отношение объема правильной треугольной призмы к объему вписанного цилиндра
Отношение объема правильной четырехугольной призмы к объему вписанного цилиндра
Для правильной шестиугольной призмы это отношение равно
Отношение площади боковой поверхности призмы к боковой поверхности вписанного цилиндра:
Поскольку половина периметра основания — полупериметр,
Таким образом, если цилиндр вписан в призму, отношение площади боковой поверхности призмы к боковой поверхности цилиндра равно отношению объема призмы к объему вписанного цилиндра. В частности, отношение площади боковой поверхности правильной треугольной призмы к площади боковой поверхности вписанного цилиндра
Отношение боковой поверхности правильной четырехугольной призмы к боковой поверхности вписанного цилиндра
Отношение боковой поверхности правильной шестиугольной призмы к боковой поверхности вписанного цилиндра
При решении задач, в которых цилиндр вписан в призму, можно рассматривать часть сечения комбинации тел плоскостью, проходящей через ось цилиндра. Для прямой призмы это сечение — прямоугольник, стороны которого равны радиусу цилиндра и высоте цилиндра. Например, AA1O1O: AA1=H, AO=r.