Когда в условии задачи сказано, что в ромб вписана окружность, в ходе ее решения может быть использовано одно из следующих рассуждений.
Точка касания вписанной в ромб окружности делит его сторону на отрезки
В этом случае радиус ромба и его диагонали можно найти, используя соотношения в прямоугольном треугольнике.
Например, F — точка касания вписанной в ромб окружности — делит сторону AB на отрезки AF=m, FB=n. О — центр вписанной в ромб окружности — является точкой пересечения его диагоналей. Треугольник AOB — прямоугольный (так как диагонали ромба взаимно перпендикулярны).
— как радиус, проведенный в точку касания. Значит, OF — высота, проведенная к гипотенузе. Отсюда
Высота ромба через радиус вписанной окружности
Радиус вписанной в ромб окружности
Радиус вписанной окружности можно найти по формуле
S — площадь ромба, p — его полупериметр (p=2a, где a — сторона ромба).
Соответственно, площадь ромба через радиус вписанной в него окружности
Поскольку площадь ромба также равна
Площадь ромба через отрезки, на которые делит сторону ромба точка касания вписанной в него окружности, может быть найдена как