Единичная окружность помогает разобраться, чему равны cos 1, cos 2, cos 3, cos 4, cos 5 и cos 6, без калькулятора и таблиц.
Чтобы найти углы в 1, 2, 3, 4 5 и 6 радиан на единичной окружности, можно вспомнить, что п приближенно равно 3,14, и привязать их местонахождение к п, п/2, 3п/2 и 2п. Можно пойти другим путем: угол в 1 радиан соответствует длине дуги, равной радиусу окружности. Соответственно, отмечаем 6 раз на окружности длину радиуса. Конечно, рисунок получается очень приблизительным, но наглядным.
Итак, косинус 1, косинус 2, косинус 3, косинус 4, косинус 5 и косинус 6 — это абсциссы (x) отмеченных точек. С помощью единичной окружности можно легко сравнивать косинусы. Мы видим, cos 1>0, cos 5>0 и cos 6>0, а cos 2<0, cos 3<0, cos 4<0. Соответственно, вопрос сравнения косинусов с разными знаками решается элементарно: любое положительное число больше любого отрицательного: например, cos1 > cos3. При сравнении косинусов с одинаковыми знаками можно использовать геометрическую интерпретацию. Таким образом получаем, например: cos2 > cos4, cos5 < cos1.
Если нужны более точные значения cos 1, cos 2, cos 3, cos 4, cos 5 и cos 6, можно воспользоваться калькулятором либо таблицами:
При оценке приблизительных значений углов, больших 6 радиан, геометрическая интерпретация тоже работает, но с увеличением угла накапливается погрешность вычислений.
Спасибо огромное, очень помогло разобраться 🙂
Пожалуйста!
Спасибо!!!
Спасибо большое!
спасибо
Долго не понимала этот вопрос! Ваше объяснение не оставило никаких вопросов! Спасибо большое!